Nonoscillatory Half-linear Difference Equations and Recessive Solutions
نویسندگان
چکیده
Recessive and dominant solutions for the nonoscillatory half-linear difference equation are investigated. By using a uniqueness result for the zero-convergent solutions satisfying a suitable final condition, we prove that recessive solutions are the “smallest solutions in a neighborhood of infinity,” like in the linear case. Other asymptotic properties of recessive and dominant solutions are treated too.
منابع مشابه
On the Growth of Nonoscillatory Solutions for Difference Equations with Deviating Argument
The half-linear difference equations with the deviating argument Δ an|Δxn| sgn Δxn bn|xn q| sgn xn q 0 , q ∈ Z are considered. We study the role of the deviating argument q, especially as regards the growth of the nonoscillatory solutions and the oscillation. Moreover, the problem of the existence of the intermediate solutions is completely resolved for the classical half-linear equation q 1 . ...
متن کاملResearch Article Trench's Perturbation Theorem for Dynamic Equations
We consider a nonoscillatory second-order linear dynamic equation on a time scale together with a linear perturbation of this equation and give conditions on the perturbation that guarantee that the perturbed equation is also nonoscillatory and has solutions that behave asymptotically like a recessive and dominant solutions of the unperturbed equation. As the theory of time scales unifies conti...
متن کاملSecond Order Linear Difference Equations and Karamata Sequences
We establish necessary and sufficient conditions for all positive solutions of a linear second order difference equation to be Karamata sequences, i.e., slowly varying or regularly varying or rapidly varying. Moreover, we discuss relations with the standard classification of nonoscillatory solutions and with the notion of recessive solutions. Our results lead to a complete characterization of p...
متن کاملAn Asymptotic Formula for Solutions of Nonoscillatory Half-linear Differential Equations
We establish a Hartman type asymptotic formula for nonoscillatory solutions of the half-linear second order differential equation ( r(t)Φ(y′) )′ + c(t)Φ(y) = 0 , Φ(y) := |y|p−2y , p > 1 .
متن کاملOn a Class of Fourth-order Nonlinear Difference Equations
We consider a class of fourth-order nonlinear difference equations. The classification of nonoscillatory solutions is given. Next, we divide the set of solutions of these equations into two types: F+and F−-solutions. Relations between these types of solutions and their nonoscillatory behavior are obtained. Necessary and sufficient conditions are obtained for the difference equation to admit the...
متن کامل